Поиск в словарях
Искать во всех

Физический энциклопедический словарь - влияние магн. поля земли

 

Влияние магн. поля земли

влияние магн. поля земли
Н0. В магн. поле Н0 на эл-н, движущийся со скоростью V, действует Лоренца сила F=-e/c[vH0], под влиянием к-рой

он вращается по окружности в плоскости, перпендикулярной H0, с гироскопич. частотой H. Траектория каждой заряженной ч-цы — винтовая линия с осью вдоль Н0. Действие силы Лоренца приводит к изменению хар-ра вынужденных колебаний эл-нов под действием электрич. поля волны, а следовательно, к изменению электрич. свойств среды. В результате ионосфера становится анизотропной гиротропной средой, электрич. свойства к-рой зависят от направления Р. р. и описываются не скалярной величиной г, а тензором диэлектрич. проницаемости ij. Падающая на такую среду волна испытывает двойное лучепреломление, т. е. расщепляется на две волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. Если направление P. p. H0, то падающую волну можно представить себе в виде суммы двух линейно поляризованных волн с ЕН0 и ЕН0. Для первой «необыкновенной» волны (е) характер вынужденного движения эл-нов под действием поля волны E изменяется (появляется компонента ускорения, перпендикулярная E) и поэтому изменяется п. Для второй (о) «обыкновенной» волны вынужденное движение остаётся таким же, как и без поля Н0 (при v║H0 сила Лоренца равна 0). Для этих двух волн (без учёта соударений) квадраты показателей преломления равны:

При Р. р. вдоль Н0:

В последнем случае обе волны имеют круговую поляризацию, причём у необыкновенной волны вектор Е вращается в сторону вращения эл-на, а у обыкновенной — в противоположную сторону. При произвольном направлении Р. р. (относительно Н0) поляризация нормальных волн эллиптическая.

По мере Р. р. в ионосфере увеличивается сдвиг фаз между волнами и изменяется поляризация суммарной волны. Напр., при Р. р. вдоль Н0 это приводит к повороту плоскости поляризации (Фарадея эффект), а при Р. р. перпендикулярно Н0 — к периодич. чередованию линейной и круговой поляризаций (см. Коттона Мутона эффект). Т. к. показатели преломления волн различны, отражение их происходит на разной высоте (рис. 12). Направление волнового вектора k при Р. р. в ионосфере может отличаться от vгр.

Рис. 12. Расщепление радиоволны в результате двойного лучепреломления в ионосфере.


Низкочастотные волны в ионосфере.

Осн. часть энергии низкочастотных (НЧ) и очень низкочастотных (ОНЧ) радиоволн практически не проникает в ионосферу. Волны отражаются от её нижней границы (днём — вследствие сильной рефракции в D-слое, ночью — от Е-слоя, как от границы двух сред с разными электрич. свойствами). Распространение этих волн хорошо описывается моделью, согласно к-рой однородные и изотропные Земля и ионосфера образуют приземный волновод с резкими сферич. стенками, в к-ром и происходит Р. р. Такая модель объясняет наблюдаемое убывание поля с расстоянием и возрастание амплитуды поля с высотой. Последнее связано со скольжением волн вдоль вогнутой поверхности волновода, приводящим к своеобразной «фокусировке» поля. Это явление аналогично открытому Рэлеем в акустике эффекту «шепчущей галереи». Амплитуда радиоволн значительно возрастает в антиподной по отношению к источнику точке Земли. Это объясняется сложением радиоволн, огибающих Землю по всем направлениям и сходящихся на противоположной стороне.

619



Влияние магн. поля Земли обусловливает ряд особенностей распространения НЧ волн в ионосфере: сверхдлинные волны могут выходить из приземного волновода за пределы ионосферы, распространяясь вдоль силовых линий геомагн. поля между сопряжёнными точками А и В Земли (рис. 13). Из формулы (5) видно,

что при <<H в случае продольного распространения n2e20/H нигде не обращается в 0, т. е. волна проходит через ионосферу без отражения. В ночной атмосфере прибл. геом. оптики нарушается и частичное прохождение есть при любом угле падения. Разряды молний в атмосфере — естеств. источник НЧ волн. В диапазоне 1—10 кГц они приводят к образованию т. н. свистящих атмосфериков, к-рые распространяются указанным образом и создают на выходе приёмника сигнал с характерным свистом.

При Р. р. инфразвуковых частот с <<H важную роль играют колебания ионов, и ионосфера ведёт себя, как проводящая нейтральная жидкость, движение к-рой описывается ур-ниями магнитной гидродинамики. В ионосфере возможно распространение неск. типов магнитогидродинамич. волн, в частности альфвеновских волн, распространяющихся вдоль геомагн. поля с характерной скоростью vA=H0/p4, где  — плотность газа, и магнитозвуковых волн, к-рые распространяются изотропно (подобно звуку).

Нелинейные эффекты при Р. р. в ионосфере проявляются уже для радиоволн сравнительно небольшой интенсивности и связаны с нарушением линейной зависимости поляризации среды от электрич. поля волны (см. Нелинейная оптика). «Нагревная» нелинейность играет осн. роль, когда характерные размеры возмущённой электрич. полем области плазмы во много раз больше длины свободного пробега эл-нов. Т. к. длина свободного пробега эл-нов в плазме значительна, эл-н успевает получить от поля заметную энергию за время одного пробега. Передача энергии при столкновениях от эл-на к ионам, атомам и молекулам затруднена из-за большого различия в их массах. В результате эл-ны плазмы сильно «разогреваются» уже в сравнительно слабом электрич. поле, что изменяет эффективную частоту соударений. По-

этому  и  плазмы становятся зависящими от поля Е волны, и Р. р. приобретает нелинейный характер. «Возмущение» диэлектрич. проницаемости: ~(Е/Еp)2, где Ер=(3(Тт/е2)(2+v2)) — характерное «плазменное» поле, Т — абс. темп-ра плазмы, б — ср. доля энергии, теряемая эл-ном при одном соударении с тяжёлой ч-цей, v — частота соударений. Т. о., нелинейные эффекты становятся заметными, когда поле волны Е сравнимо с Ер, к-рое в зависимости от частоты волны и области ионосферы составляет ~10-4—10-1 В/см.

Нелинейные эффекты могут проявляться как самовоздействие волны и как вз-ствие волн между собой. Самовоздействие мощной волны приводит к изменению её поглощения и глубины модуляции. Поглощение мощной радиоволны нелинейно зависит от её амплитуды. Частота соударений v с увеличением темп-ры эл-нов может как расти (в нижних слоях, где осн. роль играют соударения с нейтральными ч-цами), так и убывать (при соударении с ионами). В первом случае поглощение резко возрастает с увеличением мощности волны («насыщение» поля в плазме). Во втором случае поглощение падает (т. н. п р о с в е т л е н и е плазмы для мощной радиоволны). Из-за нелинейного изменения поглощения амплитуда волны нелинейно зависит от амплитуды падающего поля, поэтому её модуляция искажается (автомодуляция и демодуляция волны). Изменение n в поле мощной волны приводит к искажению траектории луча. При распространении узконаправленных пучков радиоволн это может привести к самофокусировке пучка аналогично самофокусировке света и к образованию волноводного канала в плазме.

Рис. 14. Ионосферная кроссмодуляция происходит в области пересечения лучей.


Вз-ствие волн в условиях нелинейности приводит к нарушению суперпозиции принципа. В частности, если мощная волна с частотой 1 модулирована по амплитуде, то благодаря изменению поглощения эта модуляция может передаться др. волне с частотой 2, проходящей в той же области ионосферы (рис. 14). Это явление, наз. к р о с с м о д у л я ц и е й, или Л ю к с е м б у р г г о р ь к о в с к и м э ф ф е к т о м, имеет практич. значение при радиовещании в диапазоне средних волн.

Нагрев ионосферы в поле мощной волны в коротковолновом диапазоне может вызвать тепловую параметрич. неустойчивость в ионосфере, к-рая

приводит к аномально большому поглощению радиоизлучения и расслоению плазмы (см. Параметрический резонанс). В области резонанса =(20+2H) образуются сильно вытянутые вдоль Н0неоднородности ионосферы (с продольным масштабом 1 км, поперечным — 0,5—100 м), к-рые перспективны для дальней связи в диапазоне УКВ. В поле очень мощных радиоволн эл-ны столь сильно разогреваются, что возникает электрич. пробой газа.

Если размеры возмущённой полем волны области плазмы много меньше длины свободного пробега эл-нов, н а г р е в н а я н е л и н е й н о с т ь становится слабой. Это имеет место при коротких импульсах и узких пучках радиоволн. В этом случае осн. роль играет т. н. с т р и к ц и о н н а я н е л и н е й н о с т ь, связанная с тем, что неоднородное переменное электрич. поле волны оказывает давление на эл-ны, вызывающее сжатие плазмы. Концентрация эл-нов N, а следовательно,  и  становятся зависящими от амплитуды поля. Стрикционная нелинейность приводит к изменению диэлектрич. проницаемости сe2E2/8Tm2, меньше нагревного изменения H на неск. порядков (при той же мощности волны). Стрикционная нелинейность играет важную роль в параметрич. неустойчивости ионосферы.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):